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How to factor 2048 bit RSA integers with less than a
million noisy qubits
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Planning the transition to quantum-safe cryptosystems requires understanding the
cost of quantum attacks on vulnerable cryptosystems. In Gidney+Ekerå 2019, I co-
published an estimate stating that 2048 bit RSA integers could be factored in eight
hours by a quantum computer with 20 million noisy qubits. In this paper, I substantially
reduce the number of qubits required. I estimate that a 2048 bit RSA integer could
be factored in less than a week by a quantum computer with less than a million noisy
qubits. I make the same assumptions as in 2019: a square grid of qubits with nearest
neighbor connections, a uniform gate error rate of 0.1%, a surface code cycle time of 1
microsecond, and a control system reaction time of 10 microseconds.

The qubit count reduction comes mainly from using approximate residue arithmetic
(Chevignard+Fouque+Schrottenloher 2024), from storing idle logical qubits with yoked
surface codes (Gidney+Newman+Brooks+Jones 2023), and from allocating less space
to magic state distillation by using magic state cultivation (Gidney+Shutty+Jones
2024). The longer runtime is mainly due to performing more Toffoli gates and using
fewer magic state factories compared to Gidney+Ekerå 2019. That said, I reduce the
Toffoli count by over 100x compared to Chevignard+Fouque+Schrottenloher 2024.

Data availability: Code and assets created for this paper are available on Zenodo [Gid25].
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Figure 1: Historical estimates, with comparable physical assumptions, of the physical qubit cost of factoring
2048 bit RSA integers. Includes overheads from fault tolerance, routing, and distillation. Results are from
[Jon+12; Fow+12; OC17; GM19; GE21]. Results such as [Van+10] and [LN22] aren’t included because they
target substantially different assumptions or cost models.

Figure 2: Pareto frontiers achieved by this paper for the Toffoli and logical qubit cost of factoring n bit RSA
integers, for various values of n. This paper uses notably fewer logical qubits than [GE21] (points labeled
“GE21”) and notably fewer Toffolis than [CFS24] (points labeled “CFS24”).
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1 Introduction

In 1994, Peter Shor published a paper showing quantum computers could efficiently factor inte-
gers [Sho94], meaning the RSA cryptosystem [RSA78] wasn’t secure against quantum comput-
ers. Understanding the cost of quantum factoring is important for planning and coordinating the
transition away from RSA, and other cryptosystems vulnerable to quantum computers. Corre-
spondingly, since Shor’s paper, substantial effort has gone into understanding the cost of quantum
factoring [Kni95; Bec+96; VBE96; Zal98; CW; Bea03; Zal06; Whi+09; Van+10; Fow+12; Jon+12;
PG14; Eke16; HRS16; Gid17; OC17; GM19; Eke19; Eke21; GE21; LN22; MS22; Reg24; CFS24]
(and more). A key metric is the number of qubits used by the algorithm, since this bounds the
required size of quantum computer.

Historically, there was no known way to factor an n bit number using fewer than 1.5n logical
qubits [Zal06; Bea03; HRS16; Gid17]. Anecdotally, it was widely assumed that n was the minimum
possible because doing arithmetic modulo an n bit number “required” an n qubit register. May
and Schlieper had shown in 2019 that in principle only a single output qubit was needed [MS22],
but there was no known way to prepare a relevant output that didn’t involve intermediate val-
ues spanning n qubits. In 2024, Chevignard and Fouque and Schrottenloher (CFS) solved this
problem [CFS24]. They found a way to compute approximate modular exponentiations using only
small intermediate values, destroying the anecdotal n qubit arithmetic bottleneck. However, their
method is incompatible with “qubit recycling” [PP00; ME99], reviving an old bottleneck on the
number of input qubits. Shor’s original algorithm used 2n input qubits [Sho94], but Ekerå and
Håstad proved in 2017 that (0.5 + ϵ)n input qubits was sufficient for RSA integers [EH17]. So, by
combining May et al’s result with Ekerå et al’s result, the CFS algorithm can factor n bit RSA
integers using only (0.5 + ϵ)n logical qubits [CFS24].

A notable downside of [CFS24] was its gate count. In [GE21], it was estimated that a 2048
bit RSA integer could be factored using 3 billion Toffoli gates and a bit more than 3n logical
qubits. Whereas [CFS24] uses 2 trillion Toffoli gates and a bit more than 0.5n logical qubits. So
[CFS24] is paying roughly 1000x more Toffolis for a 6x reduction in space. This is a strikingly
inefficient spacetime trade-off. However, as I’ll show in this paper, the trade-off can be made
orders of magnitude more forgiving. In addition to optimizing the Toffoli count of the algorithm,
I’ll provide a physical cost estimate showing it should be possible to factor 2048 bit RSA integers
in less than a week using less than a million physical qubits (under the assumptions mentioned in
the abstract).

The paper is structured as follows. In Section 2, I describe a streamlined version of the CFS
algorithm. In Section 3, I estimate its cost. I first estimate Toffoli counts and logical qubit counts,
and then convert these into physical qubit cost estimates accounting for the overhead of fault
tolerance. Finally, in Section 4, I summarize my results. The paper also includes Appendix A,
which shows more detailed mock-ups of the algorithm and its physical implementation.

2 Methods

In this section, I present a variation of the CFS algorithm. The underlying ideas are the same, but
many of the details are different. For example, I use fewer intermediate values and I extract the
most significant bits of the result rather than the least significant bits.

Beware that, as in [GE21], for simplicity, I will describe everything in terms of period finding
against f(e) = ge mod N (as in Shor’s original algorithm) despite actually intending to use Ekerå-
Håstad-style period finding [EH17]. Ultimately everything decomposes into a series of quantum
controlled multiplications, which fundamentally is what is actually being optimized, so what I
describe will trivially translate.

2.1 Approximate Residue Arithmetic

Consider an integer L equal to the product of many ℓ-bit primes from a set P :

L =
∏

p∈P

p (1)
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Notation Equivalent To Description

len a ⌈log2 max(1, a)⌉ Min bits needed to store an integer in the range [0, a).
len q - Number of qubits in a quantum register q.
a//b ⌊a/b⌋ Floored division of a by b.

a mod b a− b · (a//b) Remainder of a divided by b, canonicalized into [0, b).
a mod b mod c (a mod b) mod c mod is left-associative.

a ≫ b a//2b Right shift of a by b bits.
a ≪ b a2b Left shift of a by b bits.

♣a : b : c⟩
⌈(b−a)/c⌉−1∑

k=0

♣kc+ a⟩√
⌈(b− a)/c⌉

Uniform superposition, from a to b− 1, stepping by c.

GRADb
a

a−1∑

k=0

♣k⟩⟨k♣eik2πb/a Phase gradient modulo a, scaled by b.

QFTa

1√
a

a−1∑

k=0

a−1∑

j=0

♣j⟩⟨k♣eijk2π/a Quantum Fourier Transform modulo a.

∆N (a) min(a mod N,−a mod N)/N Modular deviation of a, relative to N .

int(a)

{
a → 1

¬a → 0
Indicator function for a boolean expression.

negif(a) (−1)int(a) Phase flip indicator function for a boolean expression.
ab (a ≫ b) mod 2 Access bit (or qubit) b within integer (or quint) a.

a & b
∑

k akbk ≪ k Bitwise AND of a and b.
MultiplicativeInversea(b) b−1 (mod a) Multiplicative inverse of b modulo a.

Table 1: Various bits of mostly-Python-inspired notation used in this paper.

∀p ∈ P : (len p = ℓ) ∧ IsPrime(p) (2)

A simple way to do arithmetic on a value modulo L is to store the value as a 2s complement
integer in a len L bit register, and when operating on this register add or subtract multiples of L
as appropriate to keep it in the range [0, L). This requires Ω(logL) bits of storage.

Residue arithmetic performs addition and multiplication modulo L by separately performing
the operations modulo each of the primes from P . The final result can then be recovered using the
Chinese remainder theorem. By the prime number theorem, P can be chosen so that the bit length
of primes in P is ℓ = Θ(log logL). Therefore, using residue arithmetic introduces the possibility of
arithmetic being exponentially more space efficient:

♣P ♣ = Θ


logL

log logL


(3)

ℓ = Θ(log logL) (4)

In the context of Shor’s algorithm, the key operation we want to compute is a modular expo-
nentiation V = ge mod N . Here g is a randomly chosen classical constant in [2, N), e is a uniformly
superposed m = O(logN) qubit integer, and N is the number to factor. The computation of V
can be decomposed into a series of multiplications controlled by the qubits of e:

V = ge mod N =

(
m−1∏

k=0

Mek

k

)
mod N (5)

m = O(logN) (6)

In the above equation, ek is the qubit at little-endian offset k within the register e and Mk is
the classically precomputed constant

Mk = g(2k) mod N (7)

Because the factors of N aren’t known, and because in practice those factors would be large, it’s
not viable to perform residue arithmetic modulo N . However, performing the arithmetic modulo
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any other modulus L ̸= N creates an issue. If the accumulating product exceeds L, then the
register will wrap around. This shifts its value by a multiple of L and, since L mod N ̸= 0, this
offsets the tracked value relative to the true result mod N . The following multiplications would
then amplify this error out of control, ruining the computation. I fix this in a simple way, the
same way Chevignard et al fix it, by picking L to be larger than the largest possible product. This
guarantees the wraparound issue never occurs:

L ≥ Nm (8)

With this promise about the size of L, we can rewrite the computation of V to use residue
arithmetic. Instead of computing the product directly, we can compute it using a dot product
between each residue rj (the product modulo a prime from L) and its contribution factor uj (the
smallest positive integer satisfying uj mod pi = δi,j):

rj =

(
m−1∏

k=0

Mek

k

)
mod pj (9)

uj = (L/pj) · MultiplicativeInversepj
(L/pj) (10)

V =

(
m−1∏

k=0

Mek

k

)
mod L mod N

=




♣P ♣−1∑

j=0

rjuj


 mod L mod N

(11)

To simplify later steps, I decompose rj into its ℓ bits rj,k, and write V in those terms:

rj =

ℓ−1∑

k=0

rj,k ≪ k (12)

V =




♣P ♣−1∑

j=0

ℓ−1∑

k=0

rj,k

[
uj ≪ k

]

 mod L mod N (13)

The computation of V is now a sum modulo L then modulo N , instead of a product modulo
N . Crucially, this fixes the issue where errors early in the process would be amplified by later
operations. As a result, we’re in a position to start using approximations.

Our goal now is to use approximations to extract the most significant bits of V , without
computing the entirety of V . To quantify the error in these approximations, we’ll track its “modular
deviation” ∆N (a−b). The modular deviation is the minimum number of increments or decrements
needed to turn a into b modulo N , divided by N :

∆N (a− b) =
min((a− b) mod N, (b− a) mod N)

N
(14)

To approximate additions modulo N , we’ll truncate all values down to f bits. When asked to
add an offset s into an accumulator, we’ll instead add (s mod N) ≫ t where t = len N − f . The
accumulator will be truncated to f bits, and will be operated modulo N ≫ t instead of modulo
N . At any time, the approximate result can be extracted by left shifting the accumulator’s value
by t.

Truncating introduces two sources of error. First, during additions, carries that would have
propagated out of the removed part of the register into the kept part of the register will no longer
happen. Second, the accumulating additions wrap around slightly too quickly due to (N ≫ t) ≪ t
being less than N . For an individual truncated addition, both of these errors offset the approximate
result by an amount O(2t), which is a modular deviation of O(2−f ). So the modular deviation is
exponentially small in the number of kept bits, and will accumulate linearly with the number of
operations, meaning a series of A truncated additions has a modular deviation of at most O(A·2−f ):
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t = (len N) − f (15)

S =

(
A−1∑

k=0

sk

)
mod N

S̃ =

(
A−1∑

k=0

(sk mod N) ≫ t

)
mod (N ≫ t)

∆N (S − (S̃ ≪ t)) ≤ O(A · 2−f )

(16)

This kind of approximated accumulation isn’t quite directly applicable to the current expression
for V . The issue is that V isn’t being accumulated modulo N , it’s being accumulated modulo L
and only at the end is the modulo N performed. If we were to accumulate only modulo N , instead
of modulo L then modulo N , then each time the accumulator would have wrapped modulo L we’d
miss an offset of L mod N . However, L is the product of the primes in our residue system, and
we get to choose these primes, so we can pull a trick. We can optimize L such that L mod N has
negligible modular deviation.

Numerically, it seems to be the case that picking random sets of small primes results in values of
L mod N uniformly distributed over the range [1, N). In cases I’ve tested, I’m consistently able to
find an L with deviation below 2−f with high probability by randomly sampling O(2f ) sets of small
primes. I conjecture this is true in general (see Assumption 1). I’ll show later in Equation 23 that
the required value of f grows logarithmically with the problem size len N . Assuming the conjecture
and the promise that f will grow like O(log logN), an L with sufficiently small deviation can be
found in polynomial time:

∆N (L) < 2−f (by brute force random search for a satisfying P ) (17)

Assumption 1 (random search for small modular deviations is efficient): A set P of small
primes satisfying (

∏
P ) ≥ Nm and ∆N (

∏
P ) < 2−f can be found in O(2f · poly(m · len N))

expected time by randomly varying the primes included in P .

As an example, here’s a set of 25000 primes I found in ten seconds using a 128 core machine.
Each prime is 22 bits long, and the set achieves a modular deviation below 2−32 versus the RSA2048
challenge number [Wik24]:

P1 = PrimesBetween(3814620, 222)

P2 = ¶2097769, 3484783, 3814501, 3814543, 3814561, 3814583, 3814609♢
L =

∏
(P1 ∪ P2)

N = RSA2048

∆N (L) < 2−32

(18)

Given the promise that the modular deviation of the wraparound error is at most 2−f , we
can generalize Equation 16 from approximating arithmetic modulo N to approximating arithmetic
modulo L then modulo N :

S =

(
A−1∑

k=0

sk

)
mod L mod N

S̃ =

(
A−1∑

k=0

(sk mod L mod N) ≫ t

)
mod (N ≫ t)

∆N (S − (S̃ ≪ t)) ≤ O(A · 2−f +A · ∆N (L))

≤ O(A · 2−f )

(19)

We can now apply Equation 19 to Equation 13, producing an expression for Ṽ ≈ V ≫ t:
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Ṽ =




♣P ♣−1∑

j=0

ℓ−1∑

k=0

rj,k

([
(uj ≪ k) mod L mod N

]
≫ t



 mod (N ≫ t)

=




♣P ♣−1∑

j=0

ℓ−1∑

k=0

rj,kCj,k


 mod (N ≫ t)

(20)

So, by using truncated residue arithmetic, the modular exponentiation has been approximated
into an f -bit dot product between the bits of the residues and a table of classically precomputable
constants Cj,k:

Cj,k =
([

(uj ≪ k) mod L mod N
]

≫ t


mod (N ≫ t) (21)

The computation of Ṽ incurs O(2−f ) modular deviation per truncated addition, and there are

♣P ♣ · ℓ additions, so the total modular deviation of Ṽ is at most

∆N (V − (Ṽ ≪ t)) ≤ O(♣P ♣ · ℓ · 2−f ) (22)

It will be clear from the next subsection that, in order for period finding to work, it’s sufficient
to achieve a constant total modular deviation (e.g. a modular deviation of 10%). Solving for f in
♣P ♣·ℓ·2−f = O(1) after expanding terms using Equation 3, Equation 4, Equation 6, and Equation 8
gives a bound on the size of f :

f = O(log logN) (23)

See Figure 3 for working Python code that computes Ṽ ≈ ge mod N using this method.

2.2 Approximate Period Finding

Shor’s algorithm, as usually described, performs period finding against a periodic function f(x).
It relies crucially on the fact that f(x) is exactly periodic, with f(x + P ) = f(x) for all values

of x. In this paper I’m computing an approximation f̃ ≈ f , so I can only guarantee approximate
periodicity :

∀x, y ∈ Z : ∆N

(
f̃(x+ yP ) − f̃(x)


≤ ϵ. (24)

Exact period finding will fail if used on a function that only guarantees approximate periodicity,
because the error in the approximation can make the function aperiodic. To fix this, we must
avoid measuring the error. For example, instead of measuring the entire output of f̃(x) you could

measure a truncated output f̃(x)//(100Nϵ). This could work, but causes two problems. The
first problem is that truncating the output means more inputs will be consistent with it. This
will cause the system to collapse to a large superposition of periodic signals, instead of a simple
periodic signal. I’ll address this by analyzing the behavior of period finding against superpositions
of periodic signals, as was done in [MS22]. The second problem with truncating the output is
that the parts of the output that aren’t measured would need to be uncomputed, by running
the modular exponentiation process backwards. The modular exponentiation is already the most
expensive part of the algorithm, so this would double the execution costs. I’ll address this by using
superposition masking.

Superposition masking uses sacrificial superpositions to control the information that can enter
into a register or be revealed by measurements [Zal06; Gid19a; JG20]. In the present context, we

want to avoid learning the low bits of f̃(x). We can achieve this by measuring f̃(x) + s instead of

f̃(x), where s is a uniform superposition over a contiguous range [0, ⌈SN⌉). I’ll address the value
of S later; for now note that larger values of S will suppress error from the approximation but
reduce the amount of information remaining for period finding.

Because f̃(x) happens to be computed with a series of additions into an output register, it’s

possible to compute and measure f̃(x) + s without needing to then uncompute f̃(x) or s. This is

7



import math

def approximate_modular_exponentiation (
g: int ,
Q_e: int ,
N: int ,
P: list [int],
f: int ,

) -> int:
""" Computes an approximate modular exponentiation .

Args :
g: The base of the exponentiation .
Q_e: The exponent .
N: The modulus .
P: Small primes for the residue arithmetic .
f: Kept bits during approximate accumulation .

Returns :
An approximation of pow (g, Q_e , N).

The modular deviation of the approximation is
at most 3 * Q_e . bit_length () / 2**f .

"""
L = math.prod(P)
ell = max(p. bit_length () for p in P)
m = Q_e. bit_length ()
t = N. bit_length () - f
assert L == math.lcm (*P) and L >= N ** m and (L % N) < (N >> f)

Q_total = 0
for p in P:

Q_residue = 1
for k in range (Q_e. bit_length ()):

precomputed = pow(g, 1 << k, N) % p

# controlled inplace modular multiplication :
if Q_e & (1 << k):

Q_residue *= precomputed
Q_residue %= p

u = (L // p) * pow(L // p, -1, p)
for k in range (ell ):

precomputed = (((u << k) % L % N) >> t) % (N >> t)

# controlled inplace modular addition :
if Q_residue & (1 << k):

Q_total += precomputed
Q_total %= N >> t

return Q_total << t

def test_approximate_modular_exponentiation ():
import random
import sympy

# RSA100 challenge number
N = int(

" 15226050279225333605356183781326374297180681149613 "
" 80688657908494580122963258952897654000350692006139 "

)
g = random . randrange (2, N)
Q_e = random . randrange (2**100) # small exponent for quicker test
P = [

* sympy . primerange (239382 , 2**18) ,
131101 ,
131111 ,
131113 ,
131129 ,
131143 ,
131149 ,
131947 ,
182341 ,
239333 ,
239347 ,

]
f = 24
result = approximate_modular_exponentiation (g, Q_e , N, P, f)
error = result - pow(g, Q_e , N)
deviation = min( error % N, -error % N) / N
ell = max(p. bit_length () for p in P)
assert deviation <= 3 * len(P) * ell / 2**f

Figure 3: Example Python code that approximates Ṽ ≈ ge mod N given a choice of P and f . Registers
that would store quantum values during the quantum factoring are prefixed with “Q_”. All would-be-quantum
registers are of size O(log log N), except the input register Q_e. For simplicity, this code omits optimizations
(like windowing) and crucial quantum details (like uncomputation). See Appendix A.1 for more detailed code.
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done by initializing the output register to s (instead of 0), then adding the approximation f̃(x)
into the output register, and then measuring the entire output register. To understand this process
in detail, let’s analyze the states that occur as the algorithm progresses.

At the beginning of the algorithm, the output register is storing a uniform superposition (the
mask). There is also the input register: an m qubit register storing its own uniform superposition.
Together these two registers form the initial state ♣ψ0⟩:

♣ψ0⟩ = ♣0 : 2m : 1⟩ ⊗ ♣0 : ⌈SN⌉ : 1⟩

=
1√

2m⌈SN⌉

2m−1∑

e=0

⌈SN⌉−1∑

s=0

♣e⟩ ⊗ ♣s⟩
(25)

The algorithm now adds the approximation f̃(e) into the output register, modulo N , forming

the actual pre-measurement state ♣ψ̃1⟩:

♣ψ̃1⟩ =
1√

⌈SN⌉2m

2m−1∑

e=0

⌈SN⌉−1∑

s=0

♣e⟩ ⊗ ♣(s+ f̃(e)) mod N⟩ (26)

If we had used f instead of f̃ , we would have produced the ideal pre-measurement state ♣ψ1⟩:

♣ψ1⟩ =
1√

⌈SN⌉2m

2m−1∑

e=0

⌈SN⌉−1∑

s=0

♣e⟩ ⊗ ♣(s+ f(e)) mod N⟩ (27)

Consider the infidelity 1−♣⟨ψ1♣ψ̃1⟩♣2. For each possible computational basis value e of the input

register, conditioning ♣ψ̃1⟩ and ♣ψ1⟩ on the input register storing e produces a uniform superposition

in the output register covering ⌈SN⌉ contiguous values. If the maximum modular deviation of f̃ is

ϵ, then the conditioned ranges in ♣ψ̃1⟩ are offset from the conditioned ranges in ♣ψ1⟩ by at most Nϵ.
The width of the ranges is at least S/ϵ times wider than the offset from the deviation. Therefore
the infidelity between the two conditioned states is a most ϵ/S. But this is true for every condition,
and so also bounds the total infidelity between the two states:

1 − ♣⟨ψ1♣ψ̃1⟩♣2 ≤ ϵ/S (28)

We can treat this infidelity as contributing a chance of the algorithm failing, and thereby
continue the analysis assuming we are working with the ideal state ♣ψ1⟩ instead of the actual state

♣ψ̃1⟩. For example, if we set S = 1000ϵ then ♣ψ̃1⟩ would have 99.9% overlap with ♣ψ1⟩ and so any
success rate analysis we did with ♣ψ1⟩ would produce a result within 0.1% of the true success rate.

The next step in the algorithm, which we’ll analyze with ♣ψ1⟩ instead of ♣ψ̃1⟩, is to measure
the output register. This produces some measurement result V , and collapses the system into the
post-measurement state ♣ψ2⟩. This state is a superposition of all the exponents whose masked
output ranges overlapped with V :

♣ψ2⟩ ∝
2m−1∑

e=0

♣e⟩ · int (0 ≤ (V − f(e)) mod N < ⌈NS⌉) (29)

Let P be the period of f , and let R be the set of exponents less than P that are consistent
with the measured value V . We can rewrite ♣ψ2⟩ in these terms:

R =
{
e ∈ N

∣∣∣ e < P ∧ 0 ≤ (V − f(e)) mod N < ⌈NS⌉
}

(30)

♣ψ2⟩ ≈ 1√
♣R♣

∑

e∈R

♣e : P : 2m⟩ (31)

The above equality is approximate because 2m isn’t guaranteed to be a multiple of P . Some
of the states ♣e : P : 2m⟩ have 2m//P non-zero amplitudes while others may have 2m//P + 1. To
avoid annoyances like this, I’ll continue the analysis while pretending that the signal and quantum
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Fourier transform are being worked on modulo a multiple of the period (MP ) rather than modulo a
power of 2 (2m). In reality we must operate modulo 2m, since we don’t know P , but it’s well known
that the modulo-2m behavior approximates the modulo-MP behavior [Cop02]. The error in the
approximation decreases exponentially as m increases, because the overlap between a candidate
frequency θ̃ and a true frequency θ contains a 2m scaling factor that forces the range of high-overlap
candidate frequencies to tighten towards the true frequencies:

♣θ⟩ =
1√
2m

2m−1∑

k=0

♣k⟩eiθk

∣∣∣⟨θ♣θ̃⟩
∣∣∣
2

=

∣∣∣∣∣
1

2m

2m−1∑

k=0

ei(θ−θ̃)k

∣∣∣∣∣

2

≈ sinc2
(

2m(θ − θ̃)/2


(32)

So let’s pretend we have a post-measurement state modulo MP instead of modulo 2m:

♣ψ′
2⟩ =

1√
♣R♣

∑

e∈R

♣e : P : MP ⟩ (33)

The state ♣r : MP : P ⟩ is a “simple periodic signal”. Shor proved that period finding works on
simple periodic signals. The state ♣ψ′

2⟩ isn’t a simple periodic signal; it’s a superposition of such
signals. In [MS22] it was shown that period finding works on these states, as long as the contents
of R are randomized. For completeness I’ll reproduce a similar argument here, and conjecture that
this randomized analysis applies to the actual values of R that appear when factoring.

The modulo-MP quantum Fourier transform of a simple periodic signal ♣r : MP : P ⟩ is a su-
perposition with non-zero amplitudes at multiples of MP/P = M . The non-zero amplitudes all
have equal magnitude, but their phases depend on r:

QFTMP ♣r : MP : P ⟩ = GRADr
MP ♣0 : MP : M⟩ (34)

Because the QFT of every simple periodic signal only has non-zero amplitudes at multiples of
M , the QFT of any superposition of simple periodic signals can also only have non-zero amplitudes
at multiples of M . No new frequency peaks can appear. However, there is still the possibility for
interference amongst the existing frequency peaks. If each simple periodic signal ♣r : MP : P ⟩ is
assigned an amplitude αr then we find:

QFTMP

P −1∑

r=0

αr ♣r : MP : P ⟩ =

P −1∑

r=0

αrGRADr
MP ♣0 : MP : M⟩

=

P −1∑

k=0

(
1√
P

P −1∑

r=0

αre
i2πrk/P

)
♣kM⟩

=

P −1∑

k=0

βk♣kM⟩

(35)

where βk is the amplitude of the frequency peak at ♣kM⟩:

βk =
1√
P

P −1∑

r=0

αre
i2πrk/P (36)

In the actual algorithm, the amplitudes of the simple periodic signals are zero for remainders
outside a set R, and equal for all remainders in R:

αr =
int(r ∈ R)√

♣R♣
(37)

Let w = ♣R♣ and assume that R was chosen uniformly at random from the
(

P
w

)
possible sets of w

remainders modulo P . Our goal is to derive a simple expression for E(♣βk♣2), the expected rate of
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measuring the k’th peak, given this assumption. Start by expanding definitions from Equation 36
and Equation 37, averaged over possible values of R:

E(♣βk♣2) =
1(
P
w

)
∑

R∈P([0,P ))
♣R♣=w

∣∣∣∣∣
1√
P

P −1∑

r=0

int(r ∈ R)√
♣R♣

eikr2π/P

∣∣∣∣∣

2

=
1(

P
w

)
wP

∑

R∈P([0,P ))
♣R♣=w

P −1∑

r1=0

P −1∑

r2=0

int(r1 ∈ R) · int(r2 ∈ R) · eikr12π/P e−ikr22π/P

(38)

When k = 0, all the eik... terms simplify to 1 and the overall expression simplifies to E(♣B0♣2) =
w/P . So focus on the case where k > 0.

The sum over values of R can be pushed rightward, so that it just counts how many values of
R are compatible with a choice of (r1, r2). When r1 = r2, there are

(
P −1
w−1

)
values of R that satisfy

r1 ∈ R ∧ r2 ∈ R. When r1 ̸= r2, there are
(

P −2
w−2

)
satisfying values. This replaces the sum over

values of R with a choice of multiplier determined by r1
?
= r2:

E(♣Bk>0♣2) =
1(

P
w

)
wP

P −1∑

r1=0

P −1∑

r2=0

eikr12π/P e−ikr22π/P




∑

R∈P([0,P ))
♣R♣=w

int(r1 ∈ R ∧ r2 ∈ R)




=
1(

P
w

)
wP

P −1∑

r1=0

P −1∑

r2=0

eir1k2π/P e−ir2k2π/P

{
r1 = r2 →

(
P −1
w−1

)

r1 ̸= r2 →
(

P −2
w−2

)

(39)

Note that, for non-zero values of k, the nested sum in the above equation would evaluate to 0
if the right side multiplier was replaced by a constant:

0 < k < P =⇒
P −1∑

r1=0

P −1∑

r2=0

eir1k2π/P e−ir2k2π/P = 0 (40)

This allows the right hand multiplier to be offset by any fixed amount, without changing the
total. I choose to offset by −

(
P −2
w−2

)
, zeroing the multiplier for the r1 ̸= r2 case, leaving behind only

the r1 = r2 cases. The expression then simplifies to a fraction independent of k:

E(♣Bk>0♣2) =


P

w

−1
1

wP

P −1∑

r=0

eirk2π/P e−irk2π/P


P − 1

w − 1


−

P − 2

w − 2



=


P

w

−1
1

wP
P


P − 1

w − 1


−

P − 2

w − 2



=
P − w

P (P − 1)

(41)

In other words, when w randomly chosen simple periodic signals are superposed, the system
behaves as if β0 takes a w/P cut and then β1, . . . , βP −1 equally split whats left:

E(♣βk♣2) =

{
k = 0 → w

P

0 < k < P →
(
1 − w

P

)
· 1

P −1

(42)

Therefore, in the randomized case, period finding against a superposition of w simple periodic
signals has a w/P probability of failing due to sampling 0. In the usual period finding algorithm,
the probability of sampling 0 would be 1/P instead of w/P . The randomized case otherwise
behaves identically to the usual period finding used in Shor’s algorithm.
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Figure 4: A small-scale example of how masking affects period finding. Left: a pre-measurement state, with
white meaning zero amplitude and black meaning equal non-zero amplitude. Top right: probability of measuring
different values of the output register. Masking has smoothed the distribution to be nearly uniform. Bottom
right: probability of measuring different frequency peaks of the input register. Appears uniform (instead of spiky)
because the frequencies are computed modulo the period P. Without masking, the bottom right distribution
would be exactly uniform. With masking, the zero’th frequency is substantially more likely due to constructive
interference from the masking. Certain frequencies are also less likely.

Of course, in an actual factoring, the set R isn’t random. It’s a deterministic function of N ,
g, and the sampled measurement. The success rate won’t necessarily be suppressed by the factor
1 − w/P ≈ 1 − S that it would be in the random case. In Figure 4, I show an example case. You
can see in that figure that the frequency spectrum has some dips. These wouldn’t be present in
the randomized case, and will skew the success rate. In Figure 5, I show success rate numerics
for different values of S and N . The first thing I notice when looking at the data is that the
success rate appears to skew slightly higher than 1 − S. Some instances are slightly worse than
1 − S but most are slightly better. The average success rate is higher than I expected. It also
seems that the variation in success rate is small (there’s no instance where a masking proportion
of 0.1 produced a success suppression factor below 1 − 0.2 or where a masking proportion of 0.01
produced a success suppression factor below 1 − 0.03). When collecting data for the figure, I was
hoping the variations wouldn’t just be small but would noticeably decrease as N was increased. No
such effect is apparent in the data (keeping mind that the plotted values of N are tiny compared
to 22048).

Although the numerics show that the real case isn’t exactly identical to the randomized case,
they appear close enough that, for my purposes in this paper, the real costs can be estimated by
using the randomized analysis. I will estimate costs as if a superposition mask proportion of S
incurs a probability S of the shot failing and a probability 1 − S of the shot behaving as if no
masking was present (see Assumption 2).

Assumption 2 (behavior of masked period finding): When using a superposition mask
that covers a proportion S of the output space, the cost of using masking can be roughly
estimated by multiplying the expected number of shots by 1/(1 − S).

12



Figure 5: Suppression of success rate due to the use of superposition masking, estimated by Monte Carlo
sampling. Error bars are computed by separately computing likelihoods for the masked samples and the unmasked
samples, finding the respective high/low hypothesis probabilities that have a likelihood within 100x of the max
likelihood hypothesis given the sampled data, and then making the smallest/largest ratios possible with those
high and low values.

Let’s now return to choosing the proportional width S of the superposition mask. Recall from
Equation 28 that the maximum infidelity of the analysis, caused by using an approximation f̃ with
a modular deviation of at most ϵ, is ϵ/S. Also recall from Assumption 2 that a mask covering a
proportion S of the output space behaves like an S chance of failure. The sum S+ϵ/S of these two
error mechanisms is an upper bound on the chance Pdeviant of a shot failing due to using masking
and approximations:

Pdeviant ≤ S + ϵ/S (43)

Minimizing this sum produces a choice for S, the proportional size of the mask:

S =
√
ϵ (44)

This implies that an approximation with modular deviation ϵ causes a failure rate of at most

Pdeviant ≤ 2
√
ϵ (45)

This could likely be improved, for example by using a Gaussian mask instead of a uniform mask
or by analyzing the distribution of deviations rather than focusing on the worst case deviation.
But 2

√
ϵ suffices for my purposes in this paper, so I leave such optimizations to future work.

2.3 Ekerå-Håstad Period Finding

Elsewhere in the paper, I describe computations in terms of period finding against the function
f(e) = ge (mod N). This would require an input register with 2n qubits [Sho94], where n = len N .
As in Chevignard et al’s paper, I actually use Ekerå-Håstad-style period finding [EH17] instead
of Shor-style period finding. Ekerå-Håstad-style period finding is specialized to the RSA integer
case (it requires that N factors into two similarly-sized primes), but uses n/2 + n/s input qubits
instead of 2n.
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Ekerå-Håstad-style period finding works as follows. The algorithm is given a positive integer
parameter (s). A classical value g is chosen, uniformly at random, from Z

∗
N (the multiplicative

group modulo N). A second classical value h = gN−1 mod N is derived from g and N . An n/2 +
⌈n/(2s)⌉ qubit register (x) is prepared into a uniform superposition. An ⌈n/(2s)⌉ qubit register (y)
is similarly prepared into a uniform superposition. The value gxhy (mod N) is computed under
superposition, and discarded. Then x and y are measured in the frequency basis, producing a
data point (x′, y′). This is repeated at least s+ 1 times. Post-processing then recovers, with high
probability, d = dlogg (mod N)(h) from the list of recorded points. With high probability it will be
the case that d = p+ q − 2, where p, q are the prime factors, because

gd mod N = h mod N

= gN−1 mod N

= gpq−1 mod N

= g(p−1)(q−1)+p+q−2 mod N

= gp+q−2 mod N

(46)

The factors are then recovered by solving for p in the quadratic equation p · (d− p+ 2) = N .
A detailed analysis of the post-processing and the expected number of repetitions is available

in [Eke20] (see table 1 of that paper in particular). In this paper, I’ll stay in the regime where
the expected number of repetitions is s + 1. And of course gxhy (mod N) will be computed
approximately, instead of exactly, since it compiles into a series of controlled multiplications the
same way ge mod N would have.

Because Ekerå-Håstad-style period finding involves combining multiple shots, I should discuss
how to handle bad shots. Bad shots caused by masking are usually easy to detect, because the
most common failure should be the quantum computer returning the integer 0 rather than a useful
value. On the other hand, bad shots caused by a logical gate error during the computation are
essentially silent. They manifest as the postprocessing failing despite having collected s+ 1 shots.
When this occurs, as long as errors are bounded to reasonable rates, it’s sufficient to take a few
extra shots while running the postprocessing on all ( t

s+1) possible combinations of shots (where t is
the total number of shots). If t grows too large to reasonably check all the combinations, restart
with a different choice of g.

Recall from Equation 8 that L, the size of the residue system, must be at least Nm (where m
is the number of multiplications or equivalently the number of input qubits). Because increasing s
reduces the number of input qubits, it reduces the number of multiplications which then reduces
the number of primes in the residue system which then reduces the total amount of work that
needs to be done. This compounded benefit notably improves the spacetime tradeoff of increasing
s. For example, using s = 3 results in a computation that is both smaller and faster than using
s = 1 despite the overhead of taking additional shots.

2.4 Arithmetic Optimizations

The example code I showed in Figure 3 is simple, but inefficient. In this subsection, I describe
optimizations that reduce its cost by orders of magnitude.

The first optimization is to replace modular multiplications with modular additions, by classi-
cally precomputing short discrete logarithms. This optimization was introduced in [CFS24], but I
describe it here for completeness.

Recall that, for each prime p in the residue system, we need to quantum compute a controlled
product to get p’s residue Vp = V mod p:

Vp =

m−1∏

k=0

Mek

k (mod p) (47)

Because p is small (e.g. 22 bits long), it’s feasible to find a multiplicative generator gp modulo
p and to solve for Dp,k in

g
Dp,k
p mod p = Mk mod p (48)
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Note that this equation doesn’t have a solution when Mk mod p = 0. In [CFS24], they track
the values of p and Mk for which this occurs, and handle them as a special case on the quantum
computer. I instead avoid this corner case by making it a selection criteria of the residue number
system that it doesn’t occur. That is to say, I require that

∀p ∈ P,∀x ∈ M : p mod x ̸= 0 (49)

where P is the desired set of primes making up the residue system and M is a given set of
all possible multipliers. This criterion implies the residue system can only be chosen after picking
the random generator g used by Shor’s algorithm, since M depends on g. (M also depends on
windowing parameters I’ll describe later.) Consequently, I use different residue systems even when
targeting the same value of N . Choosing the residue system is a per-shot cost, not a per-factoring
cost.

To ensure it’s possible to efficiently find a satisfying residue system, primes failing Equation 49
need to be excluded before making the random variations mentioned in Assumption 1. In the rare
event that too many primes are excluded, resulting in a search space so small that a value of P
satisfying Equation 17 is unlikely to exist, just increment the target prime bit length ℓ. This will
roughly double the number of candidate primes, and roughly halve the chance of each candidate
prime failing Equation 49, and so should quickly guarantee a solution exists if repeated.

Every value Dp,k = dlog(gp,Mk, p) can be precomputed before starting the quantum computa-
tion. As a result, the controlled product computation is replaced by a controlled sum computation:

Sp =

m−1∑

k=0

Dp,k · ek (50)

You can then compute Vp from Sp using a modular exponentiation. To further reduce costs,
use the fact that the order of gp is known to be p− 1 and compress Sp into Sp mod (p− 1) before
exponentiating:

Vp = gSp mod (p−1)
p mod p (51)

Note that this exponentiation performs multiplications, which is the operation we were trying
to avoid. However, crucially, the number of multiplications is now len p (i.e. dozens) instead of
O(logN) (i.e. thousands).

The second optimization that I apply is windowing [Kut06; VI05; Gid19b]. When computing
Spj

from e, iterate over e in chunks of w1 qubits at a time instead of 1 qubit at a time. The
w1 qubits are used as the address of a lookup into a classical table of 2w1 values, each being the
discrete logarithm of the combined product that would have been multiplied into the total if the
qubits took on a specific value. Performing the lookup has a cost of 2w1 , but reduces the number
of iterations of the inner loop computing Spj

from m to ⌈m/w1⌉.
Similar to increasing the Ekerå-Håstad parameter s, increasing w1 gives compounded benefits.

A larger value of w1 batches more multiplications together, which reduces the effective number of
multiplications, which by Equation 8 reduces the required size of the residue system.

I also use windowing when computing Vpj
from Spj

. The method is essentially identical to
what’s shown in [Gid19b], except that two multiplications are saved by initializing the accumulator
using a lookup. This was independently suggested in [LNS25].

I also use windowing when adding approximate offsets into the final total, but only because
lookups were needed in that loop anyways. It has a negligible impact on the overall cost of the
algorithm. Lookups could also be used when reducing Spj

modulo pj , with similarly negligible
impact.

The third optimization I apply is to merge the computation of Spj
with the uncomputation of

Spj−1
. In the transition from iteration j − 1 to iteration j, I could uncompute Spj−1

by a series

of controlled subtractions
∑m−1

k=0 −Dpj−1,k−1 · ek and then compute Sj by a series of controlled

additions
∑m−1

k=0 Dpj ,k · ek. But, because these use the same controls ek, these two things can
be merged. Spj−1

can be mutated into Spj
by performing controlled additions of precomputed

per-exponent-qubit differences Dpj ,k −Dpj−1,k:
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D′
j,k = Dpj ,k −Dpj−1,k (52)

Spj
= Spj−1

+

m−1∑

k=0

D′
pj ,k · ek (53)

This is a simple optimization, significant only because computing each value of Spj
is a sub-

stantial portion of the cost of the algorithm.
The fourth important optimization that I apply is deferring and merging phase corrections. In

many places in the algorithm, measurement based uncomputations produce phasing tasks. These
phasing tasks don’t need to be performed immediately, and often the phasing tasks produced
in one place can be merged with phasing tasks produced in another place. I do this so many
times throughout the implementation that it would be tedious to list them all. But, for example,
consider that a lookup performed by unary iteration [Bab+18] has AND gate uncomputations
that correspond to CZ gates. The later uncomputation of the output of the lookup will produce
substantially more complex phase corrections [Ber+19]. The CZ corrections produced by the
computation are a subset of the phase corrections that can occur during the uncomputation, and
the CZ corrections can be deferred until the uncomputation. So the CZ corrections can be merged
into the uncomputation. From a cost perspective, this deletes the CZ corrections.

A fifth optimization I apply is to flip each modular addition X += T[b] (mod p) into a subtrac-
tion X -= T2[b] (mod p) (where T2[b] = p - T[b] is a trivially modified lookup table). The
benefit of doing this is that an addition exceeding p requires an additional comparison to detect,
but a subtraction underflowing 0 is easy to detect by concatenating an extra qubit Q to the top of
the X register. Q will flip to 1 iff the subtraction underflows. So, after the subtraction, the mod-
ular addition can be completed by performing X += [0, p][Q] and then uncomputing Q using
measurement based uncomputation. The uncomputation requires a phase correction 50% of the
time, where the phase correction is based on a comparison. This modular adder costs 2.5n±O(1)
Toffolis gates in expectation (compared to 3.5n ± O(1) in [Ber+24]). If the modular addition is
later uncomputed, its cost can be further reduced to 2n±O(1) by deferring and merging the phase
correction.

See Appendix A.1 for reference Python code implementing the optimized arithmetic.

3 Results

3.1 Logical Costs

Essentially all work performed by the algorithm is addition, lookup, and “phaseup” operations:

• An n qubit addition is an operation that acts on an n qubit offset register (a) and an n qubit
target register (b). It performs the classical transition (a, b) → (a, (b+ a) mod 2n) and has a
Toffoli cost of n− 1 as well as an ancilla cost of n− 1 [Gid18]. Note that, for the purposes of
cost estimation, subtractions and comparisons are counted as additions because their circuits
are nearly identical.

• A lookup is an operation, parameterized by a classical table of values T , that acts on an n
qubit address register (a) and a quantum output register. It performs the classical transition
(a, 0) → (a, Ta) and has a Toffoli cost of 2n −n−1 as well as an ancilla cost of n−1 [Bab+18].

• A “phaseup” is an operation, parameterized by a classical table of values T , that acts on an
n qubit target register (a). It negates the amplitudes of states that have a non-zero entry in
the table, and has a Toffoli cost of

√
2n ±O(n) [Ber+19].

To estimate total cost, I first estimate the numbers and sizes of these three operations by
counting occurrences in the reference code in Appendix A.1. Table 3 shows symbolic tallies of
these quantities. I also count qubit allocations and deallocations, to list symbolic qubit tallies in
Table 4. The symbolic tallies can be turned into numeric estimates by choosing parameter values
(see Table 2) and substituting.
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To pick parameters, I ran a grid scan. The Ekerå-Håstad parameter s was ranged from 2 to
14. The prime bit length ℓ used by the residue arithmetic system was ranged from 18 to 25. The
window size w1 used by loop1 was ranged from 2 to 8. The window size w3 = w3a = w3b used by
loop3 and unloop3 was ranged from 2 to 6. The window size w4 used by loop4 was ranged from 2
to 8. The length f of the truncated accumulator was ranged from 24 to 59. Infeasible combinations
were discarded (e.g. if the prime bit length is too small, it won’t be possible to find a set of primes∏
P ≥ Nm/w1).
The best performing parameter combinations are shown as Pareto frontiers in Figure 2. I also

chose to highlight, in Table 5, parameters that minimized q3t where q is the qubit count and t
is the Toffoli count. Cubing q is just an arbitrary way of favoring space savings more than time
savings.

Symbol Equivalent to Asymptotic Description

N - θ(2n) Number to factor.
n len N θ(n) Bit size of number to factor.
ℓ - θ(logn) Bit size of primes in residue system.
s - θ(1) Ekerå-Håstad parameter.
m ⌈n/2 + n/s⌉ θ(n) Number of input qubits.
f - θ(logn) Size of output accumulator.
w1 log2(ℓ+ len m) ±O(1) θ(log logn) Window length used by loop 1.
w3 log2(ℓ)/2 ±O(1) θ(log logn) Window length used by loop 3 and unloop 3.
w4 log2(ℓ) ±O(1) θ(log logn) Window length used by loop 4.
W1 ⌈m/w1⌉ θ(n/ log logn) Number of windows iterated by loop 1.
W3 ⌈ℓ/w3⌉ θ(logn/ log logn) Number of windows iterated by loop 3.
W4 ⌈ℓ/w4⌉ θ(logn/ log logn) Number of windows iterated by loop 4.
♣P ♣ ≈ nm/(ℓ · w1) θ(n2/(logn log logn)) Number of primes in residue system.

Table 2: Descriptions of variables used in cost estimates.

Subroutine Iterations Register Size Address Size Additions Lookups Phaseups Toffolis

loop1 (♣P ♣ + 1) ·W1 ℓ+ len m w1 1 1 0 Θ̃(n3)

loop2 ♣P ♣ · len m ℓ+ len m - 2 0 0 Θ̃(n2)

loop3 (startup) ♣P ♣ ℓ 2w3 0 1 0 Θ̃(n2)

loop3 (body) ♣P ♣ · (W3 − 2) ·W3 ℓ w3 2 1 0 Θ̃(n2)

loop4 ♣P ♣ ·W4 f w4 1.5 2.5 1 Θ̃(n2)

unloop3 (body) ♣P ♣ · (W3 − 2) · 2 ·W3 ℓ w3 2.5 1.5 1 Θ̃(n2)

unloop3 (cleanup) ♣P ♣ ℓ 2w3 0 0 1 Θ̃(n2)

unloop2 ♣P ♣ · len m ℓ+ len m - 2 0 0 Θ̃(n2)

Table 3: Symbolic tallies of additions, lookups, and phaseups used by the subroutines of the algorithm. The
variables being used are defined in Table 2.
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Subroutine Added Qubits Temporary Qubits Total Qubits

Algorithm Startup m+ f 0 m+ f
Enter Outer Loop ℓ+ len m 0 m+ f + ℓ+ len m

loop1 0 2(ℓ+ len m) m+ f + 3ℓ+ 3 len m
loop2 0 ℓ+ len m m+ f + 2ℓ+ 2 len m
loop3 ℓ 2ℓ m+ f + 4ℓ+ len m
loop4 0 2f m+ 3f + 2ℓ+ len m
unloop3 −ℓ 2ℓ m+ f + 4ℓ+ len m
unloop2 −0 ℓ+ len m m+ f + 2ℓ+ 2 len m

Exit Outer Loop −ℓ− len m 2(ℓ+ len m) m+ f + 3ℓ+ 3 len m
Measure Approximate Result −f 0 m+ f
Frequency Measurement −m O(log(1/ϵ)) m+O(log(1/ϵ))

Table 4: Symbolic tallies of qubits used by parts of the algorithm. The variables being used are defined in
Table 2.

n s ℓ w1 w3 w4 f m Pdeviant E(shots) Toffolis Qubits
1024 8 18 6 3 6 28 640 2.87% 9.4 1.1e+09 742
1536 8 21 6 3 5 31 960 1.83% 9.3 3.1e+09 1074
2048 8 21 6 3 5 33 1280 1.25% 9.2 6.5e+09 1399
3072 8 21 6 3 5 35 1920 0.91% 9.2 1.9e+10 2043
4096 8 24 6 3 5 36 2560 0.80% 9.2 4.0e+10 2692
6144 8 24 6 3 5 39 3840 0.42% 9.1 1.2e+11 3978
8192 8 24 6 3 5 40 5120 0.40% 9.1 2.7e+11 5261

Table 5: Highlighted parameter choices, and resulting logical cost estimates, for factoring RSA integers of
various sizes. Pdeviant is the shot failure rate due to using an approximate modular exponentiation with masking.
E(shots) is the expected number of shots, equal to (s+1)/(1−Pdeviant)/0.99 (the /0.99 accounts for the chance
of postprocessing failure [Eke20]). The Toffolis column is expected Toffolis per factoring (not per shot).

3.2 Physical Costs

The imagined physical layout of the algorithm is as follows. There will be three regions: compute,
hot storage, and cold storage. The hot storage region will store qubits “normally”, as distance d
surface code patches using 2(d+ 1)2 physical qubits per logical qubit. The cold storage region will
store qubits more densely, by using yoked surface codes [Gid+25]. The compute region will have
room for performing lattice surgery and use magic state cultivation [GSJ24] followed by 8T-to-CCZ
distillation [Jon13] to power Toffoli gates.

I will show later in this subsection that, when factoring a 2048 bit integer, each shot will take
roughly 12 hours and involve fewer than 1600 logical qubits (including idle hot patches). Given
the assumed surface code cycle time of 1 microsecond, this implies 1600 · 12 · 60 · 60 · 106 ≈ 6.9 · 1013

logical qubit rounds of runtime to protect. Choosing a target logical error rate of 10−15 per logical
qubit round will thus result in a no-logical-error shot rate of (1 − 10−15)6.9·1013 ≈ 93.3%.

Referring to Figure 6, note that a distance of 25 is sufficient for normal surface code patches to
reach a per-patch per-round logical error rate of 10−15. So my hot patches will use 2·(25+1)2 = 1352
physical qubits per logical qubit. For the cold storage, again referring to Figure 6, yoking with
a 2D parity check code reaches a logical error rate of 10−15 when using 430 physical qubits per
logical qubit. So cold logical qubits will be roughly triple the density of hot logical qubits.

The n = 2048 row of Table 5 specifies s = 8, ℓ = 21, w1 = 6, w3 = 3, w4 = 5, f = 33, and
m = 1280. Plugging these values into Table 4, the maximum logical qubit count occurs during
loop4 when there are m + 3f + 2ℓ + len m = 1409 logical qubits active. The m = 1280 input
logical qubits are in cold storage, and so cover 1280 · 430 = 550400 physical qubits. The remaining
3f + 2ℓ+ len m = 131 logical qubits are in hot storage, and so cover 131 · 1352 = 177112 physical
qubits. Finally, the compute region will use a 7x18 region of hot patches (170352 physical qubits).
This is enough for six magic state factories, each covering a 3×4 area of hot patches, as well as three
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Figure 6: Projections of the cost of storage of normal surface codes and surface codes “yoked by” (concatenated
below) 1D and 2D parity check codes, under uniform depolarizing noise. The blue line is storage using normal
surface codes (“hot storage” in this paper). The pink line is storage using surface codes yoked by a two
dimensional parity check code (“cold storage” in this paper). The d, m, n labels indicate the surface code patch
diameter (d), the number of used surface code patches per yoked code instance (n), and the number yoked
code instances sharing lattice surgery workspace (m). This is a variant of supplementary figure 2 of [Gid+25],
with fit parameters rounded to one-and-a-half sig figs instead of one sig fig. I’m using this variation because I
was worried that the projected costs with one sig fig were too optimistic, due to rounding up the fit constants.
Specifically: in this figure the dimension=0 suppression gain parameter is 3.5 instead of 4, and the dimension=2
suppression gain parameter is 150 instead of 200, making the curves more pessimistic.
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columns of workspace. The factories (from figure 24 of [GSJ24]) are notably smaller than the 15×8
factories used in [GE21], due to replacing the first stage of distillation with magic state cultivation.
The total number of logical qubits, including idle hot patches, is 1280+131+7 ·18 = 1537 < 1600,
as promised when picking the code distances. The total number of physical qubits is 897864.

For slack, I report the physical qubit count as one million instead of 900 thousand. Specifically,
I’m a bit worried that the cold storage might get slightly worse during loop1 of the algorithm.
During this loop, the yoke measurements would have to contend with Z-splitting copies [BH17] of
cold logical qubits to stream to hot storage to be used as the addresses of lookups. I’m confident
100K physical qubits is sufficient slack to ensure the streaming can be interleaved with the required
yoke checks. I leave detailed analysis and simulations of cold storage, under various workloads, as
future work.

A mock-up of the spatial layout (after some rounding) is shown in Figure 7.
Let’s now turn to runtime. According to figure 1 of [GSJ24], cultivating a T state with a logical

error rate of 10−7 uses 30000 physical qubit · rounds of spacetime volume. Each 8T-to-CCZ factory
covers 3 · 4 · 262 · 2 qubits, and needs 8 T states, suggesting an average cultivation time of 14.7
rounds. The factory itself (shown in figure 24 of [GSJ24]) has 6 layers of lattice surgery. It uses
temporally encoded lattice surgery [CC22] so each layer should be able to execute in 2/3d rounds
rather than d rounds. In total this amounts to 114.7 rounds per CCZ state, which I round up
to 150 rounds for slack. Since the magic state cultivation targets a logical error rate of 10−7 and
8T-to-CCZ distillation has an error suppression of 28p2 [Jon13], the distilled CCZ states will have
a logical error rate of 28 · (10−7)2 < 10−12. This is low enough (compared to the Toffoli count of
6.5 billion and other error rates in the paper) that we can ignore it. Note that, because there are
six CCZ factories, the lattice surgery period (25 microseconds because d = 25) happens to be equal
to the CCZ state period (25 microseconds because 150/6 = 25). These two numbers (combined
with Table 3) allow me to bound how long additions, lookups, and phaseups take.

The largest additions that occur are the f = 33 qubit additions into the output register during
loop4. These additions require 32 CCZ states. It will take at least 32 · 25 = 800 microseconds
to generate and consume these states. After these states are consumed, the adder has finished
computing its output but it still needs to uncompute one of its inputs. This is strictly simpler,
not requiring any CCZ states, so the whole adder will take at most 800 · 2 = 1600 microseconds.
I round this up to 2 milliseconds to leave slack for things like rearranging qubits at the beginning
and end of the operation. See Appendix A.2 for a more detailed mock-up of the addition operation.

The largest lookups that occur are the w1 = 6 address qubit lookups during loop1. These
lookups need at least 26 −6−1 = 57 CCZ states, and at least 63 layers of lattice surgery [Bab+18].
This will take at least 63 · 25 = 1575 microseconds. I again round this up to 2 milliseconds for
slack. See Appendix A.4 for a more detailed mock-up of the lookup operation.

The largest phaseup operations also use 6 qubit addresses. This requires 8 CCZ states (instead
of the 64 used by a 6 qubit lookup), and the amount of lattice surgery required is similarly more
than twice as small as what’s needed for a lookup. So we can safely conclude phaseup operations
will take less than half as long as lookups; at most 1 millisecond. See Appendix A.3 for a more
detailed mock-up of the phaseup operation.

With operation durations in hand, we can plug parameter values into Table 3 and then add
up the iterations times the operations times the durations. Using 2 milliseconds per addition,
2 milliseconds per lookup, and 1 millisecond per phaseup produces an estimate of 12.07 hours
per shot (as promised when picking the code distance). The n = 2048 row of Table 5 indicates
the expected number of shots is 9.2, giving an expected total time of 12.07 · 9.1/24 = 4.63 days.
However, this doesn’t yet account for shots lost due to logical errors. Recall from earlier that shots
have a 93.3% chance of not having a logical error. Dividing 4.63 days by 93.3% gives the actual
time estimate per factoring: 4.96 days. Which I round up to a week for slack.

So, summarizing, I estimate that factoring a 2048 bit RSA integer requires less than a million
noisy qubits and will finish in less than a week. This estimate assumes a quantum computer with
a surface code cycle time of 1 microsecond, a control system reaction time of 10 microseconds, a
square grid of qubits with nearest neighbor connectivity, and a uniform depolarizing noise model
with a noise strength of 1 error per 1000 gates. See Figure 1 for a comparison of this estimate to
previous cost estimates.
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Figure 7: Mock-up of a physical layout for n = 2048, s = 8. On the left: a narrow “compute” region containing
six magic state factories and some workspace for lattice surgery. On the right: a large “cold storage” region for
high-density storage of idle qubits using yoked surface codes [Gid+25] In the middle: “hot storage” for active
qubits that need to rapidly interact with the compute region. Some slack space is included in case of unforeseen
inefficiencies.

4 Conclusion

In this paper, I reduced the expected number of qubits needed to break RSA2048 from 20 million to
1 million. I did this by combining and streamlining results from [CFS24], [Gid+25], and [GSJ24].
My hope is that this provides a sign post for the current state of the art in quantum factoring,
and informs how quickly quantum-safe cryptosystems should be deployed.

Without changing the physical assumptions made by this paper, I see no way reduce the qubit
count by another order of magnitude. I cannot plausibly claim that a 2048 bit RSA integer could
be factored with a hundred thousand noisy qubits. But there’s a saying in cryptography: “attacks
always get better” [Sch09]. Over the past decade, that has held true for quantum factoring. Looking
forward, I agree with the initial public draft of the NIST internal report on the transition to post-
quantum cryptography standards [Moo+24]: vulnerable systems should be deprecated after 2030
and disallowed after 2035. Not because I expect sufficiently large quantum computers to exist by
2030, but because I prefer security to not be contingent on progress being slow.
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A Detailed Mock-ups

A.1 Reference Python Implementation of Algorithm

In this section, I provide tested reference Python code for the optimized algorithm. Understanding
the code requires knowing its conventions. In the example code, all quantum values are stored as
variables of type quint. These variables are prefixed with Q_ and highlighted red. A quint is a
superposed unsigned integer with a known length in qubits (accessed via python’s len function).
Quints can be sliced as if they were Python lists, which returns a view of a subsection of the quint.
For example, if Q_example is a quint then Q_example[1:5] is a view of its second, third, fourth, and
fifth qubits (the view’s integer value is equal to Q_example // 2 % 16). Expressions like (Q_a «

len(Q_b)) | Q_b are also just constructing views, by concatenating qubits, not performing actual
work on the quantum computer.

Quints are created by allocation calls like qpu.alloc_quint or qpu.alloc_phase_gradient,
and cleared by “del” calls like qpu.del_by_equal_to. Measurement based uncomputations begin
with a call to qpu.mx_rz or qpu.del_measure_x. For each qubit in the quint, these methods mea-
sure the qubit in the X basis then either clear the qubit to ♣0⟩ or deallocate it. The measurements
determine if parts of the superposition where the corresponding qubit was ON had their amplitude
negated by phase kickback, and are bit packed into an int returned by the method.

The simulation code is expected to uncompute all registers and kickback phases before finishing,
which is verified by calling qpu.verify_clean_finish() (not shown in the example code). Under
the hood, the simulator works by tracking the value and phase of a few randomly sampled classical
trajectories. This isn’t sufficient to verify interference effects, or to verify that information wasn’t
incorrectly revealed (e.g. it can’t verify that masking was done correctly), but it fuzzes that the
classical output is correct and that phase kickback from measurement based uncomputation is
being fixed.

The key quantum operations that appear in the example code are additions, subtractions,
lookups, and phase flip comparisons. An addition looks like Q_a += b, which offsets Q_a by b

(working modulo 2**len(Q_a)). A subtraction looks like Q_a -= b. A phase flip comparison looks
like qpu.z(Q_a < b), where the qpu.z is shorthand for “phase flip the parts of the superposition
where”. Additions, subtractions, and comparisons all have circuits that are minor variations on an
addition circuit and so, in cost estimates, they are all treated as additions.

Lookups appear as parts of other expressions. For example, Q_a += T[Q_b] implies that a
lookup of the table T addressed by Q_b will be performed in order to produce the offset value
that will be added into Q_a. The lookup is uncomputed by the end of the addition using mea-
surement based uncomputation, producing phase flip corrections to do. These phase flip cor-
rections go into the “vent” of the lookup, which will be specified earlier in the code with a line
like T = T.venting_into(V). Later in the code, a call like qpu.z(V[Q_b]) will appear, which
is the phaseup used to resolve the accumulated phase corrections from the lookups. Alterna-
tively, a call like qpu.push_uncompute_info(V) may appear. This call will be matched by a
qpu.pop_uncompute_info() call in a later subroutine, which will handle the phase corrections.
This is done because often an address is used for multiple lookups, for example during a computa-
tion subroutine and again during an uncomputation subroutine, and the phase corrections of such
lookups can be merged.

A special kind of lookup that appears is GHZ lookups like Q_a += Q_b.ghz_lookup(k). This
is a lookup with a single address qubit and a lookup table of the form [0, k] for some integer
k. These lookups can be implemented very efficiently in lattice surgery, by Z-splitting [Hor+12]
the single address qubit into each non-zero value of k. At the end of the lookup the qubits can be
Z-merged by measuring all but one of them in the X basis, and applying a corrective Z gate to the
remaining qubit if an odd number of the measurements returned True. So a GHZ lookup is more
akin to a layer of lattice surgery than to a full blown table lookup, and correspondingly I don’t
count GHZ lookups as lookups in cost estimates.

Much of the code refers to an instance of ExecutionConfig, which includes information about
the exponentiation that is being performed as well as resources like the precomputed tables of
numbers used by the various subroutines. Readers who want to see the details of this class or run
the code should refer to the Zenodo upload [Gid25].
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import numpy as np

from facto . algorithm .prep import ExecutionConfig
from scatter_script import QPU , quint , Lookup

def approx_modexp (
Q_exponent : quint ,
conf: ExecutionConfig ,
qpu: QPU ,

) -> quint :
""" Quantum computes an approximate modular exponentation .

Args :
Q_exponent : The superposed exponent to exponentiate by.
conf : Problem configuration data , precomputed tables , etc.
qpu: Simulator instance being acted upon .

Returns :
The result of the approximate modular exponentation .

"""

Q_dlog : quint = qpu. alloc_quint ( length =conf. len_dlog_accumulator )
Q_result : quint = qpu. alloc_quint (

length =conf. len_accumulator + 1,
scatter =True , # Initialized to a superposition mask .
scatter_range =1 << conf. mask_bits ,

)
loop1_vent = Lookup (np. zeros (( conf. num_windows1 , 1 << conf. window1 ), dtype =np. bool_ ))

for i in range (len(conf. periods )):
p = int(conf. periods [i])

# Offset Q_dlog to equal dlog ( generators [i], residue , p)
loop1 (

Q_dlog =Q_dlog ,
Q_exponent = Q_exponent ,
vent= loop1_vent ,
i=i,
conf=conf ,

)

# Compress Q_dlog while preserving Q_dlog % (p - 1)
Q_compressed = loop2 (

Q_target =Q_dlog ,
modulus =p - 1,
compressed_len =p. bit_length (),

)

# Perform : let Q_residue := pow ( generators [i], Q_dlog , p)
Q_residue = loop3 (

Q_dlog = Q_compressed ,
i=i,
conf=conf ,
qpu=qpu ,

)

# Approximate : Q_result += Q_residue * (L//p) * pow (L//p, -1, p)
loop4 (

Q_residue = Q_residue ,
Q_acc =Q_result ,
i=i,
conf=conf ,
qpu=qpu ,

)

# Perform : del Q_residue := pow ( generators [i], Q_dlog , p)
unloop3 (

Q_unresult = Q_residue ,
Q_dlog = Q_compressed ,
i=i,
conf=conf ,
qpu=qpu ,

)

# Uncompress Q_dlog
unloop2 (

Q_target =Q_dlog ,
modulus =p - 1,
compressed_len =p. bit_length (),

)

# Uncompute Q_dlog .
loop1 (

Q_dlog =Q_dlog ,
Q_exponent = Q_exponent ,
vent= loop1_vent ,
i=len(conf. periods ),
conf=conf ,

)
Q_dlog . del_by_equal_to (0)

# Clear accumulated phase corrections from Q_dlog - related lookups .
for j in range (conf. num_windows1 ):

Q_k = Q_exponent [j * conf. window1 :][: conf. window1 ]

27



qpu.z( loop1_vent [j, Q_k ])

return Q_result

def loop1 (
Q_dlog : quint ,
conf: ExecutionConfig ,
Q_exponent : quint ,
i: int ,
vent: Lookup ,

) -> None :
""" Offsets Q_dlog to the discrete log of the next residue .

Args :
Q_dlog : The register to offset .
conf : Specifies details like the base of the exponent for the current

residue , window sizes , and precomputed tables .
Q_exponent : In the problem spec this is the value to exponentiate by ,

but in this method it ’s the value to use as addresses for table
lookups that get added together .

i: The iteration variable of the loop iterating over the primes in
the residue number system . Indexes the modulus and generator ,
as well as related table data , from within ‘conf ‘.

vent : Where to dump deferred phase data for uncomputing lookups .
"""
for j in range (conf. num_windows1 ):

Q_k = Q_exponent [j * conf. window1 :][: conf. window1 ]
table = conf. lookup1 [i, j]. venting_into (vent[j])
Q_dlog += table [Q_k]

def loop2 (
Q_target : quint ,
modulus : int ,
compressed_len : int ,

) -> quint :
""" Compresses ‘Q_target % modulus ‘ into a smaller part of ‘Q_target ‘.

Args :
Q_target : The register containing the remainder to compress .
compressed_len : How large the remainder should be

after compression . At least modulus . bit_length ().
modulus : The modulus used in the remainder computation .

Returns :
The slice of ‘Q_target ‘ that the remainder is in.

"""
n = len( Q_target )
while n > compressed_len :

n -= 1
threshold = modulus << (n - compressed_len )

# Perform a step of binary long division .
Q_target [: n + 1] -= threshold
Q_target [:n] += Q_target [n]. ghz_lookup ( threshold )

return Q_target [:n]

def loop3 (
conf: ExecutionConfig ,
Q_dlog : quint ,
i: int ,
qpu: QPU ,

) -> quint :
""" Computes ‘pow ( conf . generators [i], Q_exponent , conf . periods [i]) ‘.

Args :
conf : Specifies details like the base of the exponent for the current

residue , window sizes , and precomputed tables .
Q_dlog : Superposed value to exponentiate by.
i: The iteration variable of the loop iterating over the primes in

the residue number system . Indexes the modulus and generator ,
as well as related table data , from within ‘conf ‘.

qpu: Simulator instance being acted upon .

Returns :
An allocated register containing the result of the exponentation .

"""
modulus = int(conf. periods [i])
Q_result = qpu. alloc_quint ( length = modulus . bit_length () + 1)
Q_helper = qpu. alloc_quint ( length = modulus . bit_length () + 1)

# Skip first 2 iterations by direct lookup .
table = conf. lookup3c [i]. venting_into_new_table ()
Q_l = Q_dlog [: conf. window3a * 2]
Q_result ^= table [Q_l]
qpu. push_uncompute_info ( table .vent)

# Decompose exponentiation into windowed multiplications .
for j in range (2, conf. num_windows3a ):

Q_l1 = Q_dlog [j * conf. window3a :][: conf. window3a ]

# Perform ‘let Q_helper := Q_residue * X % N‘
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for k in range (conf. num_windows3b ):
Q_l0 = Q_result [k * conf. window3b :][: conf. window3b ]
Q_l = (Q_l1 << conf. window3b ) | Q_l0
table = conf. lookup3a [i, j, k]. venting_into_new_table ()

# Subtraction mod the modulus .
Q_helper -= table [Q_l]
Q_helper [: -1] += Q_helper [ -1]. ghz_lookup ( modulus )

# Defer phase corrections to ‘unloop3 ‘ method .
phase_wrap = Q_helper [ -1]. mx_rz ()
qpu. push_uncompute_info (( phase_wrap , table .vent ))

Q_result , Q_helper = Q_helper , Q_result

# Defer ‘del Q_helper := Q_residue * X^-1 % N‘ to ‘unloop3 ‘
qpu. push_uncompute_info ( Q_helper . mx_rz ())

Q_helper . del_by_equal_to (0)
return Q_result

def loop4 (
conf: ExecutionConfig ,
Q_residue : quint ,
Q_acc : quint ,
i: int ,
qpu: QPU ,

) -> None :
""" Adds Q_residue ’s approximate contribution into Q_result_accumulator .

Args :
conf : Specifies details like the base of the exponent for the current

residue , window sizes , and precomputed tables .
Q_residue : The residue of the exact total for the current modulus .
Q_acc : Where to add the residue ’s approximate contributions .
i: The iteration variable of the loop iterating over the primes in

the residue number system . Indexes the modulus and generator ,
as well as related table data , from within ‘conf ‘.

qpu: Simulator instance being acted upon .
"""
trunc = conf. truncated_modulus
for j in range (conf. num_windows4 ):

Q_k = Q_residue [j * conf. window4 :][: conf. window4 ]
table = conf. lookup4 [i, j]. venting_into_new_table ()
table2 = trunc - table

# Subtraction mod the truncated modulus .
Q_acc -= table [Q_k]
Q_acc [: -1] += Q_acc [ -1]. ghz_lookup ( trunc )

if Q_acc [ -1]. mx_rz ():
# Fix wraparound phase with a comparison .
qpu.z( Q_acc [: -1] >= table2 [Q_k ])

# Fix deferred corrections with a phase lookup .
qpu.z( table .vent[Q_k ])

def unloop3 (
Q_unresult : quint ,
conf: ExecutionConfig ,
Q_dlog : quint ,
i: int ,
qpu: QPU ,

) -> None :
""" Uncomputes ‘pow ( conf . generators [i], Q_exponent , conf . periods [i]) ‘.

Args :
Q_unresult : The register to uncompute and delete .
conf : Specifies details like the base of the exponent for the current

residue , window sizes , and precomputed tables .
Q_dlog : Superposed value to exponentiate by.
i: The iteration variable of the loop iterating over the primes in

the residue number system . Indexes the modulus and generator ,
as well as related table data , from within ‘conf ‘.

qpu: Simulator instance being acted upon .
"""
modulus = int(conf. periods [i])
Q_helper = qpu. alloc_quint ( length = modulus . bit_length () + 1)

# Decompose un - exponentiation into windowed un - multiplications .
for j in range (2, conf. num_windows3a )[:: -1]:

Q_l0 = Q_dlog [j * conf. window3a :][: conf. window3a ]

# Perform ‘let Q_helper := Q_unresult * X^-1 % N‘
for k in range (conf. num_windows3b )[:: -1]:

Q_l1 = Q_unresult [k * conf. window3b :][: conf. window3b ]
Q_l = (Q_l0 << conf. window3b ) | Q_l1
table1 = conf. lookup3b [i, j, k]. venting_into_new_table ()
table2 = modulus - table1

# Subtraction mod the modulus .
Q_helper -= table2 [Q_l]
Q_helper [: -1] += Q_helper [ -1]. ghz_lookup ( modulus )
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# Uncompute wraparound qubit .
not_phase_wrap = Q_helper [ -1]. mx_rz ()
qpu.z( not_phase_wrap ) # Only for phase cleared verification .
if not_phase_wrap :

# Fix wraparound phase with a comparison .
qpu.z( Q_helper [: -1] < table1 [Q_l ])

# Fix deferred corrections with a phase lookup .
qpu.z( table1 .vent[Q_l ])

phase_mask_from_helper_during_compute = qpu. pop_uncompute_info ()
qpu.cz(Q_helper , phase_mask_from_helper_during_compute )
Q_unresult , Q_helper = Q_helper , Q_unresult

# Perform ‘del Q_helper := Q_unresult * X % N‘
for k in range (conf. num_windows3b )[:: -1]:

Q_l1 = Q_unresult [k * conf. window3b :][: conf. window3b ]
Q_l = (Q_l0 << conf. window3b ) | Q_l1
phase_wrap , phase_table = qpu. pop_uncompute_info ()
table1 = conf. lookup3a [i, j, k]. venting_into ( phase_table )
table2 = modulus - table1

# Subtraction mod the modulus .
Q_helper -= table2 [Q_l]
Q_helper [: -1] += Q_helper [ -1]. ghz_lookup ( modulus )

# Uncompute wraparound qubit .
not_phase_wrap = Q_helper [ -1]. mx_rz ()
qpu.z( not_phase_wrap ) # Only for phase cleared verification .
if phase_wrap ^ not_phase_wrap :

# Fix wraparound phase with a comparison .
qpu.z( Q_helper [: -1] < table1 [Q_l ])

# Fix deferred corrections with a phase lookup .
qpu.z( phase_table [Q_l ])

# Skip last 2 iterations by measurement based uncomputation of lookup .
Q_helper . del_by_equal_to (0)
mx = Q_unresult . del_measure_x ()
vent = qpu. pop_uncompute_info ()
vent ^= conf. lookup3c [i]. phase_corrections_for_mx (mx)
Q_l = Q_dlog [: conf. window3a * 2]
qpu.z(vent[Q_l ])

def unloop2 (
Q_target : quint ,
modulus : int ,
compressed_len : int ,

) -> None :
""" Uncompresses ‘Q_target % modulus ‘ from a smaller part of ‘Q_target ‘.

Args :
Q_target : The register containing the remainder to uncompress .
compressed_len : How large the remainder was

after compression . At least modulus . bit_length ().
modulus : The modulus used in the remainder computation .

"""

n = compressed_len
while n < len( Q_target ):

threshold = modulus << (n - compressed_len )

# Un - perform a step of binary long division .
Q_target [:n] -= Q_target [n]. ghz_lookup ( threshold )
Q_target [: n + 1] += threshold

n += 1

A.2 Addition Operation

Given two inputs a and b, their sum s = a+ b satisfies this equation at each bit position k:

sk+1 = ((ak ⊕ sk) · (bk ⊕ sk)) ⊕ (ak ⊕ bk ⊕ sk ⊕ ak+1 ⊕ bk+1) (54)

Note that the identity is built out of three Z parity products: P1 = Zak
Zsk

, P2 = Zbk
Zsk

,
and P3 = Zak

Zbk
Zsk

Zak+1
Zbk+1

. This makes the identity interesting, when using lattice surgery,
because Z parity products are relatively cheap to access [FG18; Lit18].

A circuit diagram based on Equation 54 is shown in Figure 8. The first half of the diagram is
an out-of-place adder. It computes another qubit of s, using qubits from a and b. The second half
uncomputes a qubit of b, using the fact that b = s− a. Note that the diagram inlines details of a
teleportation used to perform a Toffoli gate. Normally, teleported Toffolis are corrected using CX
gates and CZ gates [Jon13; GF19]. The circuit instead applies corrections based on teleporting S

30



gates into multi-qubit Pauli products. Also, the circuit defers corrections that only affect phases
until uncomputing b = a − s. This allows those corrections to be merged into similar corrections
during the uncomputation, balancing out the circuit’s usage of delayed choice routing qubits. It
uses 3 routing qubits during the computation and also 3 during the uncomputation, instead of 6
during the computation and 2 during the uncomputation [GF19].

Figure 9 shows how Equation 54 can be implemented as a ZX graph and then optimized into
an efficient lattice surgery layout. (The diagram doesn’t include the delayed choice correction
operations shown in Figure 8. They’re attached to the CCZ state before it enters the picture.)
An important detail here is that the optimized graph has a different “calling convention” from the
initial graph. Instead of the qubits of a and b being passed into the adder via input ports, and
then returned via output ports, they are attached to the adder via a “Z port”. To pass a qubit into
a Z port, Z-split the qubit into two qubits [BH17] then Z-merge one of them into the Z port. The
remaining qubit stays behind, becoming the output qubit without moving. This calling convention
is beneficial because it halves the number of ports.

The physical arrangement of the addition is as follows. The two registers to add are arranged
on opposite sides of short hallways leading to the compute region. Conveniently, these hallways
have a pitch of 3 surface code patches which matches the pitch of the adder building block and
also the pitch of the magic state factories. The qubits within the hallways are ordered so that the
least significant qubits are further away from the compute region. As the adder block executes,
the hallway is used to access the next two input qubits and then the adder block produces a qubit
of the sum, which is stored in the hallway between the two inputs used to produce it. The hallway
fills in gradually as the sum is computed.

After the sum is computed, either of the inputs can be uncomputed using measurement based
uncomputation as shown on the right hand side of Figure 8. In context of the overall algorithm,
usually one of the inputs is the previous value of an accumulator and the other input is the result
of a looking up an offset. So the previous accumulator value would be uncomputed as in Figure 8,
and then the lookup value would be uncomputed using measurement based uncomputation cre-
ating phase corrections to be handled by a later phaseup operation, leaving behind only the new
accumulator value. Lattice surgery mock-ups of this process are shown in Figure 10 and Figure 11.

Figure 8: A quantum circuit diagram of an adder including Clifford corrections. Boxes containing X/Z characters
are multi-qubit Pauli product operators. Classical parities are shown using “C” operators. Boxes linked by vertical
lines form controlled operations, meaning they only act on their common -1 eigenspaces. Click here to open
this circuit in Quirk.
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Figure 9: Adder building block diagrams. Top left is a ZX graph implementing Equation 54. Top right is the
graph after merging input/output ports into Z ports. Bottom left is a complete 3-qubit adder built by attaching
together multiple instances of the graph. Bottom right is an equivalent lattice surgery diagram.

Figure 10: Manual lattice surgery mock-up of adder compute and uncompute steps. Note that the steps
tile horizontally, and Clifford corrections are being done after the operation (rather than in a reaction limited
fashion). The uncomputation step assumes one of the inputs comes from a lookup, meaning its qubits can be
removed by measurement based uncomputation with deferred phase corrections. Green highlights show CCZ-
state-associated lattice surgery. Purple highlights show input-qubit-associated lattice surgery.
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Figure 11: Manual lattice surgery mock-up of a 35 qubit inplace addition. Only intended to give a qualitative
sense of the high level layout; some details are omitted and the 3d model likely contains some minor mistakes.
Uses many copies of Figure 10. The offset B can be deleted in tandem because in context it comes from a
lookup addressed by qubits stored elsewhere.
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A.3 Phaseup Operation

A “phaseup” is a quantum operation that negates the amplitude of computational basis states
determined by a classical table of bits T . A phaseup acts on an n qubit address register and is
driven by a 2n bit table T . Typically n will be small, for example n = 6, due to the exponential
size of the table. Phaseups appear when uncomputing table lookups with measurement based
uncomputation [Ber+19].

PhaseupT =

2n−1∑

k=0

negif(Tk)♣k⟩⟨k♣ (55)

For this paper, I imagined phaseups to be implemented by splitting the register into a low half
L (with the n//2 least significant qubits) and a high half H (with the n − n//2 most significant
qubits). This effectively reshapes T into a 2len L × 2len H matrix, with rows/columns indexed by
H,L. Each half-register would then be expanded into its “power product”: a register storing every
possible product that can be formed out of the original register’s qubits. For example, if L was a
three-qubit register storing the computational basis state ♣c, b, a⟩ then its power product L∗ is the
computational basis state ♣cba, cb, ca, c, ab, b, a, 1⟩. Power products can be computed with a series
of AND gates (for example, see the left side of Figure 12). Once the power products are computed,
they can implement the phaseup operation using a series of “masked phase flips”. A masked phase
flip is a multi-controlled Z gate, with the involved qubits determined by the positions of 1s within
a binary mask m:

MaskedPhaseFlipn(m) =

2n−1∑

k=0

negif(k & m = m)♣k⟩⟨k♣ (56)

To implement the desired phaseup in terms of masked phase flips, it’s necessary to determine
the values of the masks. The data in T lists whether or not to phase flip each possible value
of the register pair (H,L). We instead want an alternate form T that lists whether or not to
include/exclude each possible masked phase flip (i.e. the coefficients of the phaseup’s EXOR
polynomial [MP01]). Conveniently, this conversion corresponds to a matrix multiplication:

T =


1 0
1 1

⊗len H

· T ·

1 1
0 1

⊗len L

(mod 2) (57)

PhaseupT =

(len L∗)−1∏

l=0

(len H∗)−1∏

h=0

CZ(H∗
h, L

∗
l )T h,l (58)

In Figure 12 I show a circuit diagram of a phaseup implemented this way, including the data-
driven CZ gates as well as the computation and uncomputation of the power products. Note that
this circuit has optimized out the two trivial qubits L∗

0 = H∗
0 = ♣1⟩, resulting in some CZ gates

becoming Z gates and one CZ gate becoming an irrelevant global phase (not shown). Also note
that Figure 12 has grouped the many individual CZ gates into a few large multi-target CZ gates.
This is beneficial because in lattice surgery the marginal cost of targeting a larger Pauli product
is notably lower than the marginal cost of doing another gate [FG18; Lit18].

I apply one key additional optimization beyond what’s shown Figure 12. I allow the AND
computations that appear during the computation of the power product to “wander”. That is to
say, I perform AND gates by gate teleportation but don’t correct the teleportation. An AND gate
computes c = a · b, whereas a wandering AND gate computes c = (a ⊕ x) · (b ⊕ y) for measured
random values x and y. Normally these x and y values are removed with corrective CNOT gates,
performed on the quantum computer. Instead, I account for the CNOT gates by computing a
correction matrix C to be multiplied into T . (C also affects the phase corrections performed
during the uncomputation of the power products.) In other words, the CNOT corrections created
by the wandering AND gates are handled by rewrites in the classical control system instead of by
extra quantum gates. This is analogous to how [Lit18] skips performing Clifford gates by folding
their effects into the Pauli product operators targeted by T gates and measurement operations.
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Figure 12: Circuit diagram of a phaseup. On the left, the input register is split into two halves and each half is
expanded into its power product using AND gates. In the middle, the desired phase flips are encoded into the
presence/absence of Z and CZ gates. On the right, the power products are uncomputed using measurement
based uncomputation. Click here to open this circuit in Quirk.

Because wandering AND gates are used when computing the power products, computing the
power products has constant reaction depth. Instead of needing to separately correct each layer of
AND gates, the corrections merge into a single massive change to the set of performed Z and CZ
gates. Only the uncomputation needs to be corrected layer by layer. So, interestingly, the overall
reaction depth of the phaseup is n/2 ±O(1) instead of n±O(1).

Overall, a phaseup can be done with 2
√

2n AND gates, 2
√

2n workspace qubits, and
√

2n multi-
target CZ gates. This is reminiscent of the O(

√
n) costs of select-swap lookups [LKS24], which

similarly starts by dividing the input register into two halves. See Figure 13 for a lattice surgery
mock-up of a phaseup operation implemented in this way.

A.4 Lookup Operation

A lookup is an operation that initializes w output qubits using values from a classical table storing
2n w-bit integers, indexed by an n qubit quantum address:

LookupT =

2n−1∑

k=0

(
♣Tk⟩ ⊗ ♣k⟩


⟨k♣ (59)

For this paper, I imagined implementing lookups similar to phaseups. First, split the address
register into two halves and compute the power product of each half. Second, perform multi-
target Toffoli gates (one for each pair of control qubits from the two half registers) to initialize
the output qubits. As in the phaseup, the AND gates in the power product computation are
allowed to wander. But now the multi-target Toffoli gates are also allowed to wander. This creates
dependencies between the different Toffoli gates, where the teleportation outcome of one can change
the qubits that must be targeted by another. These changes can be accounted for by the classical
control system, but the Toffolis must be carefully ordered to avoid having to redo work and to
avoid incurring reaction delays.

After the Toffolis finish, the lookup is completed by measuring all ancillary qubits in the X
basis. This creates an enormous number of phase corrections, but every one of these corrections
corresponds to phase flipping some subset of the address values. Therefore all these corrections
can be merged into a phaseup, which can be deferred and merged into the phaseup that appears
in the uncomputation of the lookup later on.

I show a mock-up for the lattice surgery of a lookup in Figure 14.
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Figure 13: Manual mock-up of lattice surgery performing a phaseup operation. Only intended to give a
qualitative sense of the high level layout; some details are omitted and the 3d model likely contains some minor
mistakes. Address qubits are accented with purple, CCZ qubits are accented with green, output qubits are
accented with red, and delays for control system reaction time are accented with black and white.
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Figure 14: Manual mock-up of lattice surgery for a lookup operation. Only intended to give a qualitative sense
of the high level layout; some details are omitted and the 3d model likely contains some minor mistakes. 21
multi-target CX gates are included in the diagram, out of the 63 that would be performed by a lookup with 6
address qubits. The computation of the two power products isn’t shown. Green-accented pipes are CCZ qubits,
purple-accented pipes are power product qubits, and black pipes are immobile qubits. One of the CCZ qubits
pauses momentarily when leaving the factory, before rotating to become the target of a Toffoli state, to give
time for the control system to update its targets in response to previous gate teleportations. One of the power
products is keeping its qubits still, to be reached by one of the qubits of the CCZ state during each multi-target
Toffoli. The other power product is proactively moving its qubits in front of the magic state factories, to
intercept one qubit from each CCZ state.
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A.5 Frequency Basis Measurement

A frequency basis measurement is implemented by performing an inverse Quantum Fourier trans-
form (QFT) and then measuring in the computational basis. Because of the presence of the
measurements, the deferred measurement principle can be used to merge the quadratically many
controlled phase gates that normally appear in a QFT circuit into n−1 phase gates with adaptively
determined phase angles [PP00; ME99] (see Figure 15).

To implement phase gates, I use kickback from additions into a phase gradient state [KSV02;
Gid16; Gid18; NSM20]. A phase gradient state is a g qubit state where qubit k is in the state

Z2−k ♣+⟩. Equivalently, it’s a uniform superposition where the amplitude for the computational
basis state ♣k⟩ has been phased by k/2n turns:

♣GRADg⟩ = 2−g/2
2g−1∑

k=0

♣k⟩ei2πk/2g

=

g−1⊗

k=0

Z2−k ♣+⟩ (60)

If a classical constant C is added into a g qubit phase gradient state, controlled by a qubit q,
then phase kickback will phase q by −C/2g turns while leaving the phase gradient state unchanged.
C is chosen by rounding the desired angle θ to the nearest multiple of 2π/2g.

Rounding θ introduces a per-rotation error. The maximum over/under rotation is π/2g radians.
The chance of a shot failure due to this rounding, across the n− 1 rotations done by the frequency
basis measurement, is at most n π

2g .
Another source of error is the infidelity of the phase gradient state, due to approximate prepa-

ration. This error differs from the rounding error in that it only applies once per state, instead
of once per use. The phase gradient state is an eigenstate of addition and, once prepared, is only
used as the target of additions. Therefore the prepared state could be measured in the eigenbasis
of addition without changing the behavior of the algorithm, projecting the prepared state into a
perfect state with probability equal to its fidelity. So the phase gradient preparation contributes a
shot failure probability no larger than the infidelity of the state, regardless of how many times the
state is used.

To prepare phase gradient qubits, I use single qubit Clifford+T sequences [RS14]. I convert the
sequences into a form that begins with a Pauli basis initialization, ends with a Clifford rotation,
and otherwise alternates between performing T±1

X and T±1
Z where TZ = Z1/4 and TX = X1/4. In

terms of lattice surgery, I imagine executing the sequence with the help of four neighboring patches.
Each neighbor will repeatedly cultivate a T state, undergo a parity measurement against the target
patch, and then undergo an adaptively chosen measurement. When a T±1

X gate is needed, an MXX

measurement is performed between the target patch and one of its X-boundary neighbors that has
a T state ready. This measurement reveals whether or not the target was rotated by +45◦ or −45◦

around the X axis. If it rotated in the correct direction, the neighboring patch is measured in the Z
basis. Otherwise it’s measured in the Y basis, correcting the direction of the rotation [Lit18] (up to
classically tracked Paulis). The same story occurs for T±1

Z gates, but with X and Z swapped. This
strategy results in lattice surgery operations spiraling around the target patch, with the neighbors
taking turns contributing T states (see Figure 16).

Concretely, I would use the gate sequences shown in Table 6 to prepare the phase gradient
state’s qubits. The first 11 qubits of the state are prepared using a total of 159 T gates. All further
qubits, up to the desired length g, are approximated to high fidelity by ♣+⟩ states. This preparation
has an infidelity of 5·10−6, assuming perfect gates. If the T states powering the gates are cultivated
to an infidelity of 10−7/4, then inaccurate T gates will introduce an additional infidelity of 4 ·10−6.
So, in total, preparing the phase gradient state in this way contributes a less than 10−5 chance of
algorithm failure. This chance could be reduced, by distilling better T states and using the more
accurate gate sequences from Table 7. But ultimately the error costs and operation costs of the
frequency basis measurement are completely negligible compared to other costs in the paper, so
for the purposes of cost estimates I simply ignore it.
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Figure 15: A frequency basis measurement implemented with adaptive phase gates [PP00; ME99] achieved by
kickback from controlled addition of a classical constant into a phase gradient state [KSV02; Gid18]. The phase
gradient state can be truncated, resulting in an approximate QFT [NSM20]. Click here to open this circuit in
Quirk.

Figure 16: Manual mock-up of lattice surgery preparing a phase gradient state. Left: applying a T ±1

X gate by
magic state cultivation and teleportation. The sign of the exponent is controlled by picking the basis of the
MY/Z measurement, accounting for the result of the MXX pair measurement [Lit18; GF19]. Left middle: a
central qubit can be surrounded with T ±1

X and T ±1

Z gates taking turns operating on it. Middle: this process
can be continued as long as needed. Right: many phase gradient qubits being prepared in parallel.
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 https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-7%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-6%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-5%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-4%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-3%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-2%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-1%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-0%22%7D%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%2B%3DA2%22%2C1%2C%22inputA1%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%2B%3DA3%22%2C1%2C1%2C%22inputA2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%2B%3DA4%22%2C1%2C1%2C1%2C%22inputA3%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C%22%2B%3DA5%22%2C1%2C1%2C1%2C1%2C%22inputA4%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C%22%2B%3DA6%22%2C1%2C1%2C1%2C1%2C1%2C%22inputA5%22%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C%22%2B%3DA7%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22inputA6%22%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B%22%2B%3DA8%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22inputA7%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C%22%E2%80%A6%22%5D%5D%2C%22init%22%3A%5B%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%5D%7D 
 https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-7%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-6%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-5%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-4%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-3%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-2%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-1%22%7D%2C%7B%22id%22%3A%22Z%5Eft%22%2C%22arg%22%3A%222%5E-0%22%7D%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C1%2C1%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Swap%22%2C%22Swap%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%2B%3DA2%22%2C1%2C%22inputA1%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%2B%3DA3%22%2C1%2C1%2C%22inputA2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%2B%3DA4%22%2C1%2C1%2C1%2C%22inputA3%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C1%2C%22%2B%3DA5%22%2C1%2C1%2C1%2C1%2C%22inputA4%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C1%2C%22%2B%3DA6%22%2C1%2C1%2C1%2C1%2C1%2C%22inputA5%22%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C%22%2B%3DA7%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22inputA6%22%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B%22%2B%3DA8%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22inputA7%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22Measure%22%5D%2C%5B1%2C%22%E2%80%A6%22%5D%5D%2C%22init%22%3A%5B%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%2C%22%2B%22%5D%7D 


Qubit Index Init T Gate Directions Finish T Infidelity

(k in Z2−k ♣+⟩) Basis (the signs in T±1
X , T±1

Z , T±1
X , T±1

Z , . . . ) Clifford Count
0 RX Z 0 0
1 RY 0 0
2 RZ + H 1 0
3 RZ +--++-++--+-+++-+----+ H,Y 22 5.8e-7
4 RZ ++++-----+--+--+-++-++ H 22 5.7e-7
5 RZ ++----++-++-++++++--- X 21 2.8e-8
6 RZ ---++-++++---+++----- 21 3.2e-8
7 RZ +-++--++---- H 12 5.0e-7
8 RZ ++--++---++-++-+--+ X 19 5.3e-8
9 RZ +--+--++-+-++---+---- 21 7.2e-7
10 RZ ++----+++++++----++- H 20 1.2e-7
11 RX 0 5.9e-7
12 RX 0 1.5e-7

Totals 159 3.4e-6

Table 6: Example decompositions of phase gradient qubit initializations, with a per-sequence infidelity target
of 10−6. Found using a meet-in-the-middle search. Each qubit is prepared with a Pauli basis initialization, then
alternating T ±1

X and T ±1

Z gates, then a Clifford rotation. The string of signs specifies the sign of each T ±1

X and
T ±1

Z gate in sequence, with the leftmost sign corresponding to the first T ±1

X gate.

Qubit Index Init T Gate Directions Finish T Infidelity

(k in Z2−k ♣+⟩) Basis (the signs in T±1
X , T±1

Z , T±1
X , T±1

Z , . . . ) Clifford Count
0 RX Z 0 0
1 RY 0 0
2 RZ + H 1 0
3 RZ +-+----++------++-+----+-----++-+++--+++----+++-++ H,Y 50 0
4 RZ ----+++-+-+---+++-++--+-+-+-++++--+++-+-++--+- H,Z 46 4.1e-16
5 RZ +-+--+----+---++-+++++--+++-++---++-++----+-++-+ S,H 48 6.8e-16
6 RZ ---+++-------++--+++-+--++-++--+-+-+++++++----+-+ X 49 4.1e-17
7 RZ ++---+++++--+---++++-+---+-++-+-+++-+++--++------+ H 50 6.9e-16
8 RZ ++-++-+++--++-++-++++-++--++++++----------+-- Y 45 3.0e-16
9 RZ +---+--++++++++--+--++--++-+-++---+-++----+-+-++ H 48 2.3e-16
10 RZ +++--+--+-+++++++-++++-+-++-+-+++-++---+++++-+--- 49 5.0e-17
11 RZ ++-+--++-++--++-----+-+-+-+---+++-------+-+--++ Z 47 9.7e-16
12 RZ ++------++++++--+--+-++-+----+-+++++--+++---+ Y 45 6.8e-16
13 RZ +++---+--++++-++--+++--++--+-++-+++++--+-++--+ H,Z 46 6.9e-16
14 RZ +++--+-----+++---++++-+-+++++-+++----+++---+-+--+ 49 3.9e-16
15 RZ +---++-+--+-++---+--+++-++-++++--++++-+++-+--+ H,Y 46 6.2e-16
16 RZ +--+-+-++--+++++-+-++---+++++-+-++++--+---+-++-+ H,Y 48 4.9e-16
17 RZ +-++----+---++++-+-+++-+-++++-+-+----+-++-- 43 5.3e-16
18 RZ ++---+--++--+---+--+-+---+---------++++++++--++-- X 49 1.8e-16
19 RZ +--+--+-+-+-------+---+--+---++-+--+-+++-+-+++-++ Z 49 1.3e-16
20 RZ ----+-++++--+-++--+++--+++--++-------+-+-+---++-- 49 9.7e-16
21 RZ ++---++-++-+--++----+-+-+--+-++++--++-++---+++++ H 48 6.1e-16
22 RZ +-++-+-+----+++--+-++--+-+-+-++-++---++-+--+++-+--++ H,Z 52 3.4e-16
23 RZ +++---+---+-+--++--+------+--++--+-+---+---+++- X 47 5.9e-16
24 RZ ++++-----+-++---+-+++---+-+-++++-+++-++++-++++--+ X 49 2.5e-16
25 RZ +-+-++---+++-++++-+-+-++++-+-+-++++-+++---++-+-++ 49 2.9e-16
26 RX 0 5.5e-16
27 RX 0 1.4e-16

Totals 1102 1.1e-14

Table 7: Same as Table 6 but with a per-qubit infidelity target of 10−15.
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